2,609 research outputs found

    On the linear stability of the inviscid Kármán vortex street

    Get PDF
    The classical point-vortex model for a Kármán vortex street is linearly stable only for an isolated case. This property has been shown numerically to hold for other, more complicated, models of the same flow. It is shown here that it is a consequence of the Hamiltonian structure of the model, related to the codimension of the set of matrices with a particular Jordan block structure in the space of Hamiltonian matrices, and that it can be expected to hold generically for any two-dimensional inviscid array of vortices that has back-to-fore symmetry, and that is 'close enough' to the point-vortex model

    Coherent structures and dynamical systems

    Get PDF
    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized

    Towards Odor-Sensitive Mobile Robots

    Get PDF
    J. Monroy, J. Gonzalez-Jimenez, "Towards Odor-Sensitive Mobile Robots", Electronic Nose Technologies and Advances in Machine Olfaction, IGI Global, pp. 244--263, 2018, doi:10.4018/978-1-5225-3862-2.ch012 VersiĂłn preprint, con permiso del editorOut of all the components of a mobile robot, its sensorial system is undoubtedly among the most critical ones when operating in real environments. Until now, these sensorial systems mostly relied on range sensors (laser scanner, sonar, active triangulation) and cameras. While electronic noses have barely been employed, they can provide a complementary sensory information, vital for some applications, as with humans. This chapter analyzes the motivation of providing a robot with gas-sensing capabilities and also reviews some of the hurdles that are preventing smell from achieving the importance of other sensing modalities in robotics. The achievements made so far are reviewed to illustrate the current status on the three main fields within robotics olfaction: the classification of volatile substances, the spatial estimation of the gas dispersion from sparse measurements, and the localization of the gas source within a known environment

    Real-Time odor classification through sequential bayesian filtering

    Get PDF
    The classification of volatiles substances with an e-nose is still a challenging problem, particularly when working under real-time, out-of-the-lab environmental conditions where the chaotic and highly dynamic characteristics of the gas transportation induce an almost permanent transient state in the e-nose readings. In this work, a sequential Bayesian filtering approach is proposed to efficiently integrate information from previous e-nose observations while updating the belief about the gas class on a real-time basis. We validate our proposal with two real olfaction datasets composed of dynamic time-series experiments (gas transitions are Considered, but no mixture of gases), showing an improvement in the classification rate when compared to a stand-alone probabilistic classifier.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Gas Source Localization Strategies for Teleoperated Mobile Robots. An Experimental Analysis

    Get PDF
    Gas source localization (GSL) is one of the most important and direct applications of a gas sensitive mobile robot, and consists in searching for one or multiple volatile emission sources with a mobile robot that has improved sensing capabilities (i.e. olfaction, wind flow, etc.). This work adresses GSL by employing a teleoperated mobile robot, and focuses on which search strategy is the most suitable for this teleoperated approach. Four different search strategies, namely chemotaxis, anemotaxis, gas-mapping, and visual-aided search, are analyzed and evaluated according to a set of proposed indicators (e.g. accuracy, efficiency, success rate, etc.) to determine the most suitable one for a human-teleoperated mobile robot. Experimental validation is carried out employing a large dataset composed of over 150 trials where volunteer operators had to locate a gas-leak in a virtual environment under various and realistic environmental conditions (i.e. different wind flow patterns and gas source locations). We report different findings, from which we highlight that, against intuition, visual-aided search is not always the best strategy, but depends on the environmental conditions and the operator’s ability to understand how gas distributes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Corruption and Productivity Growth in OECD Countries

    Get PDF
    The study of corruption is attracting lot of attention in recent years. Focusing on the economic consequences of corruption, the empirical evidence points to a positive relation between institutional integrity, or absence of corruption, and economic growth. Although most developed countries tend to have lower corruption than less developed ones, there exists significant variation within OECD countries. As an example, it may be observed that the gap in perceived corruption between the Nordic countries and southern Europe is larger than the gap between southern Europe and the average of the emerging economies. In this context, the objective of this paper is to analyze the impact of corruption on economic performance in a sample of OECD countries during the period 1980-2000. Specifically, we study the effect of corruption on productivity and efficiency change, trying to determine whether productivity growth is greater in countries with lower corruption. To this end, different productivity measures are compared by considering both output per worker and Total Factor Productivity (TFP). Furthermore, TFP change is decomposed into efficiency change and technological progress by means of Malmquist productivity indices. On the basis of this of this decomposition we will analyze whether corruption affect TFP growth via efficiency gains or technological change, thus gaining insight into the channels through which corruption influence economic growth.

    Planar Odometry from a Radial Laser Scanner. A Range Flow-based Approach

    Get PDF
    In this paper we present a fast and precise method to estimate the planar motion of a lidar from consecutive range scans. For every scanned point we formulate the range flow constraint equation in terms of the sensor velocity, and minimize a robust function of the resulting geometric constraints to obtain the motion estimate. Conversely to traditional approaches, this method does not search for correspondences but performs dense scan alignment based on the scan gradients, in the fashion of dense 3D visual odometry. The minimization problem is solved in a coarse-to-fine scheme to cope with large displacements, and a smooth filter based on the covariance of the estimate is employed to handle uncertainty in unconstraint scenarios (e.g. corridors). Simulated and real experiments have been performed to compare our approach with two prominent scan matchers and with wheel odometry. Quantitative and qualitative results demonstrate the superior performance of our approach which, along with its very low computational cost (0.9 milliseconds on a single CPU core), makes it suitable for those robotic applications that require planar odometry. For this purpose, we also provide the code so that the robotics community can benefit from it.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Spanish Government under project DPI2014-55826-R and the grant program FPI-MICINN 2012
    • …
    corecore